A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method

نویسندگان

  • Annalisa Quaini
  • Alfio Quarteroni
چکیده

We address the numerical simulation of fluid-structure interaction problems dealing with an incompressible fluid whose density is close to the structure density. We propose a semi-implicit coupling scheme based on an algebraic fractional-step method. The basic idea of a semi-implicit scheme consists in coupling implicitly the added-mass effect, while the other terms (dissipation, convection and geometrical non-linearities) are treated explicitly. Thanks to this kind of explicit-implicit splitting, computational costs can be reduced (in comparison to fully implicit coupling algorithms) and the scheme remains stable for a wide range of discretization parameters. In this paper we propose to derive this kind of splitting from the algebraic formulation of the coupled fluid-structure problem (after finite-element space discretization). This approach extends for the first time to fluid-structure problems the algebraic fractional step methodology that was previously advocated to treat the pure fluid problem in a fixed domain. More particularly, for the specific semi-implicit method presented in this report we adapt the Yosida scheme to the case of a coupled fluid-structure problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction

We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, the fluid velocity is computed separately from the coupled pre...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

High Accuracy Semi-implicit Spectral Deferred Correction Decoupling Methods for a Parabolic Two Domain Problem

A numerical approach to estimating solutions to coupled systems of equations is partitioned time stepping methods, an alternative to monolithic solution methods, recently studied in the context of fluid-fluid and fluid-structure interaction problems. Few analytical results of stability and convergence are available, and typically such methods have been limited to first order accuracy in terms o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006